Nuclear Radiation

The release of radiation is a phenomenon unique to nuclear explosions. There are several kinds of radiation emitted; these types include gamma, neutron, and ionizing radiation, and are emitted not only at the time of detonation (initial radiation) but also for long periods of time afterward (residual radiation).

Initial Nuclear Radiation

Initial nuclear radiation is defined as the radiation that arrives during the first minute after an explosion, and is mostly gamma radiation and neutron radiation.

The level of initial nuclear radiation decreases rapidly with distance from the fireball to where less than one roentgen may be received five miles from ground zero. In addition, initial radiation lasts only as long as nuclear fission occurs in the fireball. Initial nuclear radiation represents about 3 percent of the total energy in a nuclear explosion.

Though people close to ground zero may receive lethal doses of radiation, they are concurrently being killed by the blast wave and thermal pulse. In typical nuclear weapons, only a relatively small proportion of deaths and injuries result from initial radiation.

Residual Nuclear Radiation

The residual radiation from a nuclear explosion is mostly from the radioactive fallout. This radiation comes from the weapon debris, fission products, and, in the case of a ground burst, radiated soil.

There are over 300 different fission products that may result from a fission reaction. Many of these are radioactive with widely differing half-lives. Some are very short, i.e., fractions of a second, while a few are long enough that the materials can be a hazard for months or years. Their principal mode of decay is by the emission of beta particles and gamma radiation.

Page 14 of 24 Previous PageNext Page

Company Logo About Us | | Support | Privacy | Site Map | Weblog | Support Our Site

© Copyright 1998-2020 AJ Software & Multimedia All Rights Reserved

National Science FoundationNational Science Digital LibraryNuclear Pathways Member SiteThis project is part of the National Science Digital Library and was funded by the Division of Undergraduate Education, National Science Foundation Grant 0434253